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Abstract

Under the standard modal explication of consequence, a conclusion is a
consequence of some premises just in case necessarily, if the latter are
true, so is the former. Notoriously, this explication yields some results
that at first glance are counter-intuitive. In particular, a necessary truth
is a consequence of arbitrary premises, and premises that cannot all
be true together entail arbitrary conclusions. In his paper ‘On Ground
and Consequence’ (Synthese, 2021), Benjamin Schnieder introduces a
novel notion of web consequence, defined on the basis of the concept of
ground, which, he argues, fits our intuitive conception better. Building
on his idea, the present paper examines the concept of web consequence
in more detail. In particular, I provide three alternative, and simpler
semantic characterizations of Schnieder’s propositional logic of web con-
sequence, two within a form of truthmaker semantics, one within a
many-valued setting. I then consider some natural variations on that logic
and establish their connections to well-known subclassical logics such as
FDE, K3, and LP. Finally, I provide sound and complete tableaux-based
proof systems for each of the logics of web consequence so obtained.
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1 Introduction

The standard way of explicating the notion of consequence—of some conclusion
following from some premises—is in modal terms: a conclusion is a consequence
of some premises just in case necessarily, if the premises are true, so is the
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conclusion. As is well-known, this explication yields some prima facie peculiar
instances of consequence. In particular, if it is impossible for some premises to
be jointly true, then an arbitrary conclusion is a consequence of them, and if a
conclusion is necessarily true, then it is a consequence of an arbitrary collection
of premises. There is a rich literature on how to characterize formal theories of
logical consequence that avoid such results, in which a conclusion is entailed1

by some premises only if there is a relevant connection between premises and
conclusion. But we are not usually given an alternative, general explication
of consequence replacing the modal one, which might be seen as underlying
those formal theories. In his recent paper ‘On Ground and Consequence’ (?),
Benjamin Schnieder proposes such an alternative explication of consequence,
which makes central use of the concept of ground. Roughly, the idea is to
regard a conclusion as following from some premises just in case, however the
premises might be grounded, they have a ground which contains a ground of
the conclusion. Schnieder labels the conception of consequence so characterized
web consequence, since consequence is taken to be a matter of the existence of
suitable paths from premises to conclusion within the web of their potential
grounds. He then proceeds to develop a formal implementation of this notion
with respect to a propositional language, and to discuss some features of the
resulting propositional logic, without however providing a sound and complete
deductive system.

Building on Schnieder’s work, my aim in this paper is to explore the concept
of web consequence further. In the first part, I consider a natural variation,
already hinted at by Schnieder, on the general definition of web consequence,
and discuss its relation to Schnieder’s original version. In the second part,
I turn to the formal semantic characterization of web consequence. Here, I
develop three alternative semantic characterizations of Schnieder’s logic, all of
which are simpler than Schnieder’s and some of which are, in a sense to be
explained, more robustly semantic. Two of them are set within the framework
of truthmaker semantics, while the third one uses a many-valued semantics.
I also consider some natural variations on Schnieder’s logic and relate them
to well-known subclassical logics such as FDE, K3, and LP. In the third part,
I turn to the proof theory, and provide sound and complete tableaux-based
proof systems for each of the resulting logics of web consequence.

2 General Explications of Web Consequence

In this section, I introduce Schnieder’s general definition of web consequence
and explain how he motivates it (cf. (?, sec. 4)).2 I go on to specify a variation
on his definition which is hinted at by Schnieder and discuss how the definitions
are related.

1I use the terms ‘consequence’, ‘follows from’, ‘entails’ and their ilk interchangeably, so that
some premises entail a conclusion just in case the conclusion follows from, i.e. is a consequence
of, the premises.

2I have reformulated some of the definitions in a way that I find clearer and easier to grasp. So
my definitions below differ from Schnieder’s in some superficial respects, but they are easily seen
to be equivalent.
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The counter-intuitive instances of modal consequence we have mentioned
above are cases in which, intuitively, it seems that the premises are irrelevant
to the conclusion. In light of this, it is a natural idea to try to use the notion of
ground to obtain a more satisfactory explication of consequence.3 After all, it
is uncontroversial that in order for some facts to ground another, the putative
grounds must be relevant to the putative groundee. Moreover, it is widely held
that grounds must also necessitate what they ground, so that any instance of
grounding is automatically an instance of modal consequence.4

So ground has some features we would like the desired explication of
consequence to have. It also has some features that seem unsuitable for a
consequence relation. Before stating them, let me introduce some symbolism
to speak about ground. For present purposes, we may regard (full5) ground
as a relation between a set of true propositions—the grounds—and a true
proposition—the groundee. I shall use variables P, Q, . . . to range over propo-
sitions and Γ, ∆, . . . to range over sets of propositions, and accordingly write
statements of ground like this: Γ < P .

The crucial ‘unwelcome’ features of ground are:

� Non-Monotonicity : Γ < P does not entail Γ ∪∆ < P
� Factivity : Γ < P entails that P and all members of Γ are true
� Directedness: Γ ∪ {Q} < P entails ∆ ∪ {P} ≮ Q

Following Schnieder, I will assume for the purposes of this paper that none of
these three features are acceptable for an explication of consequence.

Starting from the relation of ground, we can think of Schnieder’s strat-
egy as that of defining a notion of consequence by stripping ground of these
three characteristics. To obtain a monotonic relation, Schnieder asks not if the
premises ground of the conclusion, but if they contain, as a subset, a ground
of the conclusion. To obtain a non-factive relation, he proposes to raise that
question under the hypothesis that the premises are true. Finally, to obtain an
undirected, i.e. non-hierarchical or flat relation, he has us consider not just the
premises, but the premises or any of their grounds, as sources for a ground of
the conclusion.

More precisely, we proceed as follows. First, we define relations of thin
grounding both between a set of propositions and a proposition and between
sets of propositions.

Definition 1 Let P,Q be propositions and Γ,∆ sets of propositions. Then

3I assume that readers are familiar with the basic features of ground; for a good introduction,
see e.g. ?, ?.

4This assumption is widely but not universally accepted, dissenters include ??. I shall assume
throughout that grounds necessitate what they ground.

5There is a standard distinction between full and partial grounding. The simplest example to
illustrate the distinction concerns conjunctive groundees. The fact that snow is white and the fact
that grass is green together fully ground the fact that snow is white and grass is green. Each of the
two facts that snow is white and that grass is green individually partially grounds the conjunctive
fact, but is on its own insufficient to fully ground it.
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� Γ thinly grounds (short: t-grounds) P iff Γ grounds P or (Γ = {P} and P
is true)

� Γ t-grounds ∆ iff Γ is the union of t-grounds for each P ∈ ∆

We may now define Schnieder’s notion of web consequence—call it WCS for
web consequence, Schnieder—as follows:

Definition 2 Let P be a proposition and Γ a set of propositions. Then Γ entailsWCS

P iff: in every scenario in which Γ is true, some t-ground ∆ of Γ has a subset ∆0

which t-grounds P .

Two comments on the phrase ‘in every scenario in which Γ is true’ are in order.
First, for brevity, I call a set of propositions true iff every member of the set
is true. Second, I have replaced Schnieder’s phrase ‘under the hypothesis that’
by ‘in every scenario in which’, anticipating how Schnieder himself proposes
to explicate the idea later on.6 Note also that if we assume that t-grounds
amalgamate, so that the union of some t-grounds is always itself a t-ground,
the condition simplifies to: in every scenario in which Γ is true, the maximal
t-ground of Γ contains a t-ground of P .

In addition to narrowly ground-theoretic resources, this explication of con-
sequence invokes a kind of suppositional device in generalizing over alternative
scenarios and asking us to evaluate what holds within these scenarios. The
purpose of this is to ‘de-factivize’ ground: to allow premises to entail a conclu-
sion even when premises and/or conclusion are false. Now some authors hold
that there is also a non-factive understanding of the notion of ground itself. So
a natural question is if we can avoid making use of the suppositional construc-
tion by appealing to a non-factive notion of ground instead.7 The simplest
suggestion is to delete the generalization over scenarios and replace t-ground
by a non-factive version. So let us first define non-factive versions of t-ground.

Definition 3 Let P,Q be propositions and Γ,∆ sets of propositions. Then

� Γ thinly non-factively grounds (short: tn-grounds) P iff Γ non-factively
grounds P or Γ = {P}

� Γ tn-grounds ∆ iff Γ is the union of tn-grounds for each P ∈ ∆

Can we now just take Γ to entail P iff some tn-ground of Γ contains a t-ground
of P?

The answer is clearly negative. Given the standard assumption that a dis-
junction is non-factively grounded by each disjunct, this would mean that

6In Schnieder’s formal account, the role of the phrase ‘under the hypothesis that’ is taken over
by a universal generalization over models, and in his subsequent discussion of his logic, Schnieder
glosses talk of models in terms of talk of scenarios; cf. his ?, sec. 5.

7Indeed, Schnieder himself claims that this can be done, but prefers for reasons of familiarity
to stick to factive ground and the suppositional construction; cf. his ?, p. S1348.
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P ∨ Q in general entails P ∧ Q, which it obviously does not. To see what
has gone wrong, it is useful to consider more carefully what the suppositional
construction in Schnieder’s definition does. We may describe it as having a
twofold effect. The first is one of supply : within the scope of ‘in every scenario
in which Γ is true’, we have available the assumption that the premise set Γ is
true. The second effect, however, is one of subtraction: within the scope of ‘in
every scenario in which Γ is true’, we no longer have available any more spe-
cific information about how the premises are grounded, beyond the fact that
we are in a scenario in which they are grounded somehow. Switching from a
factive to a non-factive notion of ground is an alternative way to achieve the
first effect, but not the second, equally crucial one.

This diagnosis also suggests a natural fix: instead of generalizing over sce-
narios in which some non-factive ground of the premises is also a factive
ground, we may simply generalize directly over all non-factive grounds. That
is, instead of generalizing over all scenarios in which the premise set Γ is
true, i.e. which features some t-ground of Γ, we generalize directly over all tn-
grounds of Γ. And instead of asking of each such scenario whether it features
a t-ground of Γ that contains a t-ground of the conclusion P , we ask of any
such tn-ground whether it has a tn-ground that contains a tn-ground of P .
The resulting notion of web consequence—call it WCN for web consequence,
non-factive—is then as follows:

Definition 4 Let P be a proposition and Γ a set of propositions. Then Γ entailsWCN

P iff: every tn-ground Γ′ of Γ has a tn-ground ∆ which has a subset ∆0 which
tn-grounds P .

For a number of reasons, it is not straightforward to say how this explication
of web consequence relates to the previous one; it depends on exactly how
one conceives of scenarios as well as non-trivial details about the structural
features of ground, non-factive ground, and their relation. As we shall see in
the subsequent sections, however, once we have fixed the central logical fea-
tures of scenarios, the relationships between the (propositional) logics of these
consequence relations can be answered somewhat more straightforwardly.8

3 The Ground-Theoretic Semantics

In this section, we turn to the formal implementation of our two definitions
of web consequence for the case of propositional logic. I will present a slightly
more general version of Schnieder’s formal semantics and use it to define four
candidate implementations of WCS, one of which coincides with Schnieder’s,
as well as a formal implementation of WCN.

8Roughly speaking, the general question becomes as manageable as the logical one if we assume
that grounding chains always terminate, and that whenever a proposition with non-factive grounds
is true in a scenario, so is at least one of its non-factive grounds. The reason that the logical
question is simpler is that these assumptions are unproblematic for the cases of logical grounding
relevant to the logic of the consequence relations.
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Let L be a propositional language with connectives ∧, ∨, and ¬, based on
a set of sentence letters (short: atoms) At. As usual, atoms and their negations
are called literals, and their set is denoted by Lit. We use variables p, q, r for
arbitrary atoms, ϕ, ψ, χ for arbitrary literals, A, B, C for arbitrary formulas,
and Γ, ∆ for arbitrary sets of formulas of L, adding various adornments like
primes, sub-, or superscripts as we see fit.

We use standard notions of completeness, consistency, and classicality for
sets of literals:

Definition 5 Let s ⊆ Lit. Then

� s is complete iff for every p ∈ At, s ∩ {p,¬p} has at least one member
� s is consistent iff for every p ∈ At, s ∩ {p,¬p} has at most one member
� s is classical iff s is complete and consistent

The central element of Schnieder’s semantics is a recursive definition of a
(thin) grounding relation over L relative, in effect, to a set s of literals. The
definition may be stated as follows.9

Definition 6 For s ⊆ Lit, let ≤s be the smallest subset of ℘(L)×L satisfying the
following conditions, where Gs(A) abbreviates that there is some Γ ⊆ L with Γ ≤s A:

� {ϕ} ≤s ϕ if ϕ ∈ s
� {A} ≤s A ∨B and {A} ≤s B ∨A if Gs(A)
� {A, B} ≤s A ∨B and {A, B} ≤s A ∧B if Gs(A) and Gs(B)
� {¬A} ≤s ¬(A ∧B) and {¬A} ≤s ¬(B ∧A) if Gs(¬A)
� {¬A, ¬B} ≤s ¬(A∧B) and {¬A, ¬B} ≤s ¬(A∨B) if Gs(¬A) and Gs(¬B)
� {A} ≤s ¬¬A if Gs(A)
� {A} ≤s A if Gs(A)
� Γ ∪∆ ≤s A if Γ ≤s B and {B} ∪∆ ≤s A

I should note that Schnieder’s definition (?, p. S1350) differs from the present
one with respect to some details. First, Schnieder’s definition is relative to what
he counts as a model, which corresponds to a complete set of literals. But the
completeness requirement plays no role in the definition, and our purposes are
better served by a more general definition. Secondly, Schnieder simultaneously
defines by induction three distinct items: a property G—being grounded—of
formulas, a grounding relation corresponding to my ≤, and a partial version
of it. It is not completely transparent to me how exactly his definition is
to be understood, so I prefer to use the present one. Indeed, there seem to

9An extensionally similar, syntactic definition of a (logical) grounding relation over a proposi-
tional language is given in (?, sec. 1). Correia’s definition is in terms of certain kinds of trees, which
are constructed by rules for the different types of sentences that roughly mirror the clauses for
the same types of sentences in the definition below. There are other interesting points of contact
between Correia’s work and the material below, but a more thorough comparison is unfortunately
beyond the scope of this paper.
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be at least minor problems with Schnieder’s own definition. In particular, in
place of my final clause, Schnieder has a simple transitivity clause for one-one
partial ground. But this clause only ever yields new instances of partial ground,
whereas Schnieder needs it to yield instances of full ground (cf. e.g. his proof
that (A∧B)∨(A∧C) entails A∧(B∨C); (?, p. S1352)). The present definition
affords a straightforward way to avoid these issues, and it seems clear that it
accords with Schnieder’s intentions.

If we think of s as the set of true literals under a given interpretation of
L, ≤s is a relation of thin, full, factive grounding. So, taking sets of literals as
models of scenarios, we might obtain a formal counterpart for L to Schnieder’s
WCS by taking Γ to entail C just in case for every s ⊆ Lit, if Gs(Γ), then there
are ∆0 ⊆ ∆ ⊆ L such that ∆ ≤s Γ and ∆0 ≤s C. Now note that grounds in the
sense of ≤s amalgamate. For suppose that Γ ≤s A and ∆ ≤s A. It follows that
Gs(A) and hence by the penultimate clause of the definition, {A}∪{A} ≤s A.
Two applications of the final Cut clause then yield Γ ∪∆ ≤s A, as required.
As a result, the condition that there are ∆0 ⊆ ∆ ⊆ L such that ∆ ≤s Γ and
∆0 ≤s C simplifies to: the maximal ∆ ⊆ L with ∆ ≤s Γ has a subset ∆0 with
∆0 ≤s C.

To give precise and explicit definitions of consequence, we start with two
auxiliary definitions. Firstly, we state a precise definition of the grounding
relation, relativized to a set of literals s, between sets of formulas and sets
of formulas in terms of the basic relation between sets of formulas and for-
mulas. Secondly, we define a relation, also relative to a set of literals s, that
obtains just in case the simplified condition just described is satisfied, i.e. just
in case there exists a suitable path along the s-relative grounding web from
the premises Γ to conclusion C:

Definition 7 Let s ⊆ Lit, C ∈ L, Γ ⊆ L. Then

� ∆ ≤s Γ iff: for some indexing {Ai}i∈I of Γ, there is an indexed family of
sets {∆i}i∈I with ∆ =

⋃
i∈I ∆i and ∆i ≤s Ai for all i ∈ I

� Γ ⇒s C iff: if Gs(Γ), then the maximal ∆ ⊆ L with ∆ ≤s Γ has a subset
∆0 with ∆0 ≤s C.

In terms of this relation, we can then define different consequence relations by
generalizing over different classes of sets of literals. I shall consider four such
classes, comprising all classical, all complete, all consistent, and absolutely all
sets of literals, respectively:

Definition 8 Let Γ ∪ {C} ⊆ L. Then

� Γ |=4 C iff: Γ ⇒s C for every s ⊆ Lit
� Γ |=I C iff: Γ ⇒s C for every complete s ⊆ Lit
� Γ |=P C iff: Γ ⇒s C for every consistent s ⊆ Lit
� Γ |=2 C iff: Γ ⇒s C for every classical s ⊆ Lit
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(In what is hopefully a helpful mnemonic, the subscripts are supposed to
remind one of 4 -valued, possibly inconsistent, possibly partial, and 2 -valued
interpretations.)

Relating these definitions to WCS, we may note that the work of the sup-
positional operator ‘under the hypothesis that Γ is true’ or ‘in every scenario
in which Γ is true’ is now taken over by the device of generalizing over sets of
literals, together with the conditionalization on the truth of Γ in the definition
of ⇒s. Conditionalizing on the truth of Γ serves to make available the assump-
tion that Γ is true. Generalizing over a class of sets of literals serves to make
unavailable any assumptions about which statements are true which is not sta-
ble across all sets of literals in the class. So generalizing over all sets of literals,
as in the definition of |=4, removes all information about which statements are
true. Generalizing only over the classical sets of literals, by contrast, retains
every classical logical truth. Generalizing only over consistent sets retains the
information that we never have both an atom and its negation true, and gen-
eralizing only over complete sets retains the information that we always have
at least one of any atom and its negation true.

This last option is Schnieder’s choice: his models are required to make true
at least one of each atom and its negation, and his definition of consequence is
readily seen to be equivalent to |=I . But it is not immediately clear why this
should be our choice, and not one of the other three. From both a technical
and a philosophical point of view, it seems worthwhile also to consider these
alternative definitions.

Let us finally see how the alternative general notion of web consequence
WCN may be given a formal implementation. First, we shall need a non-factive
version of the grounding relation defined above. The obvious modification of
the definition is simply to remove all occurrences of ‘if Gs(A)’ and ‘if Gs(B)’,
and to let {ϕ} ≤s ϕ hold irrespective of whether ϕ ∈ s. The relation so defined
is then independent of the choice of s, as one would expect, so we shall simply
write ≤N for the resulting relation. We can then define non-factive versions of
the set-set relation of ground and of⇒s, and in terms of these, our consequence
relation:

Definition 9 Let s ⊆ Lit and Γ ∪ {C} ⊆ L. Then

� Γ ⇒N C iff the maximal ∆ ⊆ L with ∆ ≤N Γ has a subset ∆0 with ∆0 ≤N C
� Γ |=N C iff: for every Γ′ ≤N Γ, Γ′ ⇒N C

We briefly pause to note a distinctive implication of all five of the above defini-
tions of consequence: nothing is ever entailed by the empty set of premises.10

To see this, note first that by definition 7, since the only indexing of the empty
set is empty, and the empty union is the empty set, for all s ⊆ Lit, ∅ is the
maximal ∆ ⊆ L with ∆ ≤s ∅. Moreover, for all s ⊆ Lit and all C ∈ L, ∅ ̸≤s C.

10Schnieder also recognizes this feature of his account; cf. ?, p. S1354.
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As a result, ∅ ⇒s C fails for all s ⊆ Lit and C ∈ L. It follows that ∅ ̸|=∗ C for
all ∗ ∈ {4, I, P, 2}; parallel reasoning applies in the case of |=N .

As Schnieder’s own discussion suggests (cf. ?, pp. S1352ff), it is possible to
simplify his semantics somewhat. Note first that under the present definition
of ≤s, Γ ≤s C implies that Γ is finite, and every formula has only finitely many
distinct grounds. Moreover, as Schnieder emphasizes, it is straightforward to
verify that under this definition, whenever some formula is grounded at all, it is
grounded by a set of literals. This is immediate for literals, and given the final
Cut clause in the definition, it is straightforward to show that the property
of being grounded by a set of literals if grounded at all is preserved under
conjunction, disjunction, negated conjunction, negated disjunction, as well as
double negation. As a result, we can in general restrict attention to grounding
relationships with sets of literals as grounds. This allows us to simplify the
definitional conditions for ⇒s and ⇒N .

Proposition 1 Let ≤l
s and ≤l

N be the restriction of ≤s and ≤N to ℘(Lit)×L. Let
Γ ∪ {C} ⊆ L and s ⊆ Lit. Then

1. Γ ⇒s C iff: if Gs(Γ) then the maximal ∆ ⊆ Lit with ∆ ≤s Γ has a subset
∆0 with ∆0 ≤s C

2. Γ ⇒N C iff: the maximal ∆ ⊆ Lit with ∆ ≤N Γ has a subset ∆0 with
∆0 ≤N C

Proof For (1), right-to-left, assume that Gs(Γ), so by the right-hand side, the maxi-
mal ∆l ⊆ Lit with ∆l ≤s Γ has a subset ∆l0 with ∆l0 ≤s C. Let ∆ be the maximal
subset of L with ∆ ≤s Γ. Then ∆l ⊆ ∆ and hence ∆l0 ⊆ ∆, so ∆ has a subset ∆0

with ∆0 ≤s C, as required.
For the left-to-right direction, suppose Γ ⇒s C. Suppose Gs(Γ), and let ∆ be the

maximal subset of L with ∆ ≤s Γ. Then by the left-hand side, ∆ has a subset ∆0

with ∆0 ≤s C. Now let ∆l be the maximal subset of Lit with ∆l ≤s Γ. Now pick a
∆l0 ⊆ Lit with ∆l0 ≤s ∆0. Since ∆0 is finite, it follows by Cut that ∆l0 ≤s C. Now
note that ∆l0 is the union of a finite family of grounds of elements of ∆. By Cut and
maximality of ∆, each ground of an element of ∆ is a subset of ∆, so ∆l0 is a subset
of ∆, and hence a subset of ∆l. So ∆l has a subset that grounds C, as required.

For (2), right-to-left, suppose that the maximal ∆l ⊆ Lit with ∆l ≤N Γ has a
subset ∆l0 with ∆l0 ≤N C. Let ∆ be the maximal subset of L with ∆ ≤N Γ. Then
∆l ⊆ ∆ and hence ∆l0 ⊆ ∆, so ∆ has a subset ∆0 with ∆0 ≤N C, as required.

For the left-to-right direction, suppose Γ ⇒N C. Let ∆ be the maximal subset of
L with ∆ ≤N Γ, so by the left-hand-side, ∆ has a subset ∆0 with ∆0 ≤N C. Now let
∆l be the maximal subset of Lit with ∆l ≤N Γ. Pick a ∆l0 ⊆ Lit with ∆l0 ≤s ∆0.
By the same reasoning as before, ∆l0 is then a subset of ∆l with ∆l0 ≤s C, as
required. □

In addition, as is tedious but straightforward to verify, the restrictions ≤l
s and

≤l
N of ≤s and ≤N to ℘(Lit)× L can also be characterized as follows:
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Proposition 2 Let Γ ∪ {s} ⊆ Lit. Then Γ ≤l
s A iff Γ ⊆ s and Γ ≤l

N A. And

1. Γ ≤l
N ϕ iff Γ = {ϕ}

2. Γ ≤l
N A ∨ B iff Γ ≤l

N A or Γ ≤l
N B or Γ = ΓA ∪ ΓB for some ΓA ≤l

N A
and ΓB ≤l

N B
3. Γ ≤l

N A ∧B iff Γ = ΓA ∪ ΓB for some ΓA ≤l
N A and ΓB ≤l

N B
4. Γ ≤l

N ¬(A ∧ B) iff Γ ≤l
N ¬A or Γ ≤l

N ¬B or Γ = ΓA ∪ ΓB for some
ΓA ≤l

N ¬A and ΓB ≤l
N ¬B

5. Γ ≤l
N ¬(A ∨B) iff Γ = ΓA ∪ ΓB for some ΓA ≤l

N ¬A and ΓB ≤l
N ¬B

6. Γ ≤l
N ¬¬A iff Γ ≤l

N A

Proof Omitted for reasons of space. □

This fact can be used to show that the sets of literals that are non-factive
grounds of a formula A of L are precisely the same as the exact truthmakers of
A within the so-called canonical model of L within truthmaker semantics. This
suggests that our five consequence relations can conveniently be studied within
the general framework of truthmaker semantics. The next section pursues this
idea.

4 Truthmaker Semantics

In this section, after briefly introducing the framework of truthmaker seman-
tics, I define its canonical model for L and use it to obtain simplified
characterizations of our five consequence relations (sec. 4.1). I go on to examine
their relations to one another and to some other well-known consequence rela-
tions (sec. 4.2). Finally, I address the concern that both the definitions given
within Schnieder’s setting and those given in terms of the canonical model
seem disappointingly linguistic by providing equivalent definitions in terms of
a class of (non-canonical) models (sec. 4.3).

Much as in possible world semantics, a proposition is characterized in terms
of the possible worlds at which it is true, in truthmaker semantics, a proposition
is characterized in terms of the states that make it true. Like worlds, states are
taken to be non-disjunctive in the sense that a state makes true a disjunction
only if it makes true at least one of the disjuncts. Unlike worlds, states are
allowed to be partial, leaving open the truth-value of some propositions. And
unlike worlds, states are allowed to be impossible, so for a given proposition,
a state may contain both a truthmaker of that proposition and a truthmaker
of its negation.

Truthmaking, or verification, is taken to be exact in the sense that a truth-
maker has to be wholly relevant to any proposition it makes true. For example,
the state of it being windy and cold does not make true the proposition that
it is windy, since it is partially irrelevant: it contains the state of it being cold,
which is irrelevant to the truth of the proposition that it is windy. So, like
ground, truthmaking is non-monotonic: a state containing a truthmaker of a
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proposition is not in general itself a truthmaker of that proposition, just as a
collection of facts containing as a subcollection a ground of a fact is not in gen-
eral itself a ground of that fact. More generally, the notion of truthmaking may
be regarded as a kind of semantic reflection of the notion of ground: roughly
speaking, for a state to make a proposition true is for the state’s obtaining to
non-factively ground that the proposition is true (cf. e.g. (?, sec. 3)). Corre-
spondingly, as we shall see, the way truthmaker semantics takes verification to
interact with conjunction, disjunction, and negation is very similar to the way
Schnieder’s semantics takes grounding to interact with the same operations.

The basic formal structure within truthmaker semantics is that of a state-
space, defined as follows.11

Definition 10 A state-space is a pair (S, ⊑) where S is a non-empty set and ⊑ is
a partial order on S such that every subset T of S has a least upper bound wrt ⊑,
denoted by

⊔
T .

Informally, we think of S as the set of states, and ⊑ as the relation of part-
whole on the states. Where T ⊆ S,

⊔
T is the fusion of the elements of T , and

when T = {t1, t2, . . .} we also write
⊔
T as t1 ⊔ t2 ⊔ . . . Any state-space has a

least element,
⊔

∅, which is called the nullstate and denoted by □, as well as
a greatest element,

⊔
S, which is called the fullstate and denoted by ■.

Definition 11 Let (S, ⊑) be a state-space. Then

� A unilateral proposition is any non-empty subset of S
� For P, Q unilateral proposition, let

– P ∧Q = {s ⊔ t : s ∈ P, t ∈ Q}
– P ∨Q = P ∪Q ∪ (P ∧Q)

� A bilateral proposition P is any pair of unilateral propositions; we refer to
the first (second) coordinate of P as P+ (P−)

� For P, Q bilateral propositions, let

– ¬P = (P−, P+)
– P ∧Q = (P+ ∧Q+, P− ∨Q−)
– P ∨Q = (P+ ∨Q+, P− ∧Q−)

Note that from these definitions we can derive principles for (exact) verification
by a state precisely analogous to the principles given in proposition 2 for being
grounded by a set of literals:

Proposition 3 Let (S,⊑) be a state-space, s ∈ S, and P and Q bilateral propositions
from (S,⊑).

11For a more detailed exposition of the framework, see ???.
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1. s verifies P iff s ∈ P+

2. s verifies P ∨Q iff s verifies P or s verifies Q or s = t ⊔ u for some t ∈ S
verifying P and u ∈ S verifying Q

3. s verifies P ∧Q iff s = t⊔u for some t ∈ S verifying P and u ∈ S verifying
Q

4. s verifies ¬(P ∧Q) iff s verifies ¬P or s verifies ¬Q or s = t ⊔ u for some
t ∈ S verifying ¬P and u ∈ S verifying ¬Q

5. s verifies ¬(P ∨ Q) iff s = t ⊔ u for some t ∈ S verifying ¬P and u ∈ S
verifying ¬Q

6. s verifies ¬¬P iff s verifies P

Proof Straightforward by application of the definitions. □

Based on any given state-space, we can now build state-models for our
language L.

Definition 12 A state-model M for L is any triple (S, ⊑, [·]) where (S, ⊑) is a
state-space and [·] is a function mapping each atom p ∈ At to a bilateral proposition
on (S, ⊑).

The function [·] is extended to complex formulas in the obvious way, letting
[¬A] = ¬[A], [A ∧B] = [A] ∧ [B], and [A ∨B] = [A] ∨ [B].

Given a state-model M = (S, ⊑, [·]), we say that a state s ∈ S exactly
verifiesM (falsifiesM ) a formula A ∈ L iff s ∈ [A]+ ([A]−), dropping the sub-
scripts when no confusion threatens. We further say that s inexactly verifies
(falsifies) A iff s has a part that exactly verifies (falsifies) A. When speaking
of verification or falsification without qualification, I always mean the exact
variant.

Finally, we extend the notions of verification to sets of formulas. When
Γ ⊆ L, we call a verifier-choice from Γ any set of states that may be obtained
by picking one verifier for each A ∈ Γ. A state s is then said to verify Γ iff s is
the fusion of some verifier-choice from Γ. Note that if Γ is empty, the empty
set is the sole verifier-choice, and so □ is the sole verifier of Γ. A state is said
to inexactly verify Γ iff it contains a verifier of Γ.

4.1 Canonical Semantics

For a given propositional language, there is a natural way to construct a state-
space from the set of literals of the language; we call that state-space the
canonical state-space for the language in question.

Definition 13

� The canonical state-space C for L is the pair (SC , ⊑C) where SC =℘(Lit)
and ⊑C is the subset relation on SC .
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� The canonical model MC for L is (SC , ⊑C , [·]C) where [·]C maps any atom
p into the ordered pair ({{p}}, {{¬p}}).

Relative to the canonical model, we can now give analogous definitions of
consequence relations which are provably equivalent to the previous definitions.

Definition 14 Let s ∈ SC and Γ∪{C} ⊆ L. Then Γ ⇒C
s C iff: if s inexactly verifies

Γ, then the maximal part of s verifying Γ contains a verifier of C.

Definition 15 Let Γ ∪ {C} ⊆ L. Then

� Γ |=CN C iff in MC , every verifier of Γ contains a verifier of C
� Γ |=C4 C iff in MC , Γ ⇒s C for every s ∈ SC

� Γ |=CI C iff in MC , Γ ⇒s C for every complete s ∈ SC

� Γ |=CP C iff in MC , Γ ⇒s C for every consistent s ∈ SC

� Γ |=C2 C iff in MC , Γ ⇒s C for every classical s ∈ SC

(In what follows, I shall often leave the qualification ‘in MC ’ implicit.)

Proposition 4 For any s ⊆ Lit, A ∈ L, and Γ ⊆ L:

1. s verifies A iff s ≤l
N A,

2. s falsifies A iff s ≤l
N ¬A,

3. s verifies Γ iff s ≤l
N Γ,

4. Gs(A) iff s inexactly verifies A,
5. Gs(Γ) iff s inexactly verifies Γ

Proof By a straightforward induction on the complexity of A. □

Proposition 5 Let Γ ∪ {C} ⊆ L. Then Γ |=N C iff Γ |=CN C

Proof From propositions 2 and 4. □

Lemma 6 Let s ∈ SC and Γ ∪ {C} ⊆ L. Then Γ ⇒s C iff Γ ⇒C
s C

Proof From proposition 2(1), it follows that (*) for ∆ ⊆ Lit, Gs(∆) iff ∆ ⊆ s.
Right-to-left: Suppose that Γ ⇒C

s C, so if s inexactly verifies Γ, then the maximal
part of s verifying Γ contains a verifier of C. We need to show that Γ ⇒s C, i.e. that
if Gs(Γ), then the maximal ∆ ⊆ Lit with ∆ ≤s Γ has a subset ∆0 with ∆0 ≤s C.
So suppose Gs(Γ). By proposition 4, s inexactly verifies Γ. So by assumption, the
maximal part t of s verifying Γ contains a verifier of C. By proposition 4, t ≤N Γ,
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and for some t′ ⊑ t, t′ ≤N C. Since t′ ⊆ t ⊆ s, it follows that t ≤s Γ and t′ ≤s C.
From this, it follows straightforwardly that Γ ⇒s C, as required.

Now suppose that Γ ⇒s C, so if Gs(Γ), then the maximal ∆ ⊆ Lit with ∆ ≤s Γ
has a subset ∆0 with ∆0 ≤s C. We need to show that if s inexactly verifies Γ, then
the maximal part of s verifying Γ contains a verifier of C. So suppose s inexactly
verifies Γ. Then by proposition 4, Gs(Γ). So by assumption, the maximal ∆ ⊆ Lit
with ∆ ≤s Γ has a subset ∆0 with ∆0 ≤s C. Since ∆ ≤s Γ, we have ∆ ⊆ s and
∆ ≤N Γ, so by proposition 4, ∆ verifies Γ, and hence is part of the maximal part of
s verifying Γ. Since ∆0 ≤s C, ∆0 verifies C, so ∆, and hence the maximal part of s
verifying Γ, contains a verifier of C, as required. □

Proposition 7 Let Γ ∪ {C} ⊆ L. Then Γ |=∗ C iff Γ |=C∗ C for all ∗ ∈ {4, I, P, 2}

Proof From lemma 6. □

4.2 Connections

In this section, we make a number of observations regarding the connec-
tions between the various consequence relations we have defined, as well
as connections to other well-known consequence relations. First of all, it is
straightforward to show that |=4 and |=N coincide.

Proposition 8 Γ |=N C iff Γ |=4 C

Proof Suppose that Γ |=4 C, so for every s ∈ SC , Γ ⇒s C. Let t be an arbitrary
verifier of Γ. Then the maximal part of t verifying Γ contains a verifier of C. So t
contains a verifier of C. By proposition 5, Γ |=N C. Conversely, suppose Γ |=N C, so
every verifier of Γ contains a verifier of C. Let s be any inexact verifier of Γ, and let
t be an exact verifier of Γ contained in s. Then t is contained in the maximal part of
s verifying Γ. By assumption, t contains a verifier of C, and hence the maximal part
of s verifying Γ contains a verifier of C. So Γ |=4 C. □

Moreover, in terms of canonical models, and using our notions of arbitrary,
complete, consistent, and classical canonical states, we can characterize four
well-known consequence relations: first-degree entailment (FDE), the logic of
paradox (LP), strong Kleene logic (K3), and classical logic (CL):12

Definition 16 Let Γ ∪ {C} ⊆ L. Then

12The most straightforward way to show this is to use the standard relational or four-valued
semantics for these consequence relations (e.g. (?, ch. 7)), and to note the correspondence between
an (arbitrary, complete, consistent, classical) state containing a verifier of a formula and (arbitrary,
complete, consistent, classical) relational interpretations relating the formula to the truth-value
1.—(?, sec. 1-3) establishes related results, characterizing the same consequence relations in terms
of a syntactically defined grounding relation that agrees in relevant respects with our verification
relation in the canonical model.
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� Γ |=FDE C iff for every s ∈ SC , if s contains a verifier of Γ, s contains a
verifier of C

� Γ |=LP C iff for every complete s ∈ SC , if s contains a verifier of Γ, s
contains a verifier of C

� Γ |=K3 C iff for every consistent s ∈ SC , if s contains a verifier of Γ, s
contains a verifier of C

� Γ |=CL C iff for every classical s ∈ SC , if s contains a verifier of Γ, s contains
a verifier of C

|=FDE and |=K3 coincide with |=4 and |=P , respectively:

Proposition 9 Let Γ ∪ {C} ⊆ L. Then

1. Γ |=4 C iff Γ |=FDE C
2. Γ |=P C iff Γ |=K3 C

Proof For 1., note that the condition that every verifier of Γ contains a verifier of C
is equivalent to the condition that every state containing a verifier of Γ contains a
verifier of C. The result then follows from proposition 8.

For 2., suppose Γ |=P C, so Γ ⇒s C for every consistent s ∈ SC . Let t ∈ SC be
consistent and suppose t contains a verifier of Γ. Then by assumption, the maximal
part of t verifying Γ contains a verifier of C. So t contains a verifier of C, and so
Γ |=K3 C. Suppose now that Γ |=K3 C, so every consistent state containing a verifier
of Γ contains a verifier of C. Let s be a consistent state containing a verifier of Γ,
and let t be the maximal verifier of Γ contained in s. Then t is a consistent state
containing a verifier of Γ, and since Γ |=K3 C, t contains a verifier of C. So Γ |=P C.

□

|=LP and |=CL, on the other hand, do not coincide with their web-consequence
counterparts |=I and |=2, but they are nevertheless closely related to them in
the following ways:

Proposition 10 Let Γ ∪ {C} ⊆ L. Then

1. Γ |=I C implies Γ |=LP C
2. Γ |=2 C implies Γ |=CL C
3. Γ |=LP C does not imply Γ |=I C
4. Γ |=CL C does not imply Γ |=2 C
5. Γ |=LP C iff Γ, C ∨ ¬C |=I C
6. Γ |=CL C iff Γ, C ∨ ¬C |=2 C

Proof For 1. and 2., suppose Γ |=I C / Γ |=2 C, and let s be a complete / classical
state containing a verifier of Γ. By assumption, the maximal part of s verifying Γ
contains a verifier of C, and hence s contains a verifier of C, as required.
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For 3. and 4., note that since any complete state contains a verifier of any instance
of the law of excluded middle C ∨¬C, we have A |=LP C ∨¬C and A |=CL C ∨¬C
for arbitrary A and C. But since the maximal part of a complete state verifying A
need not contain either a verifier of C or of ¬C, we have neither A |=I C ∨ ¬C nor
A |=2 C ∨ ¬C. In addition, as we already noted, we never have ∅ |=I C or ∅ |=2 C,
whereas ∅ |=LP C and ∅ |=CL C holds whenever C is a classical tautology.

For 5. and 6, suppose first that Γ |=LP C / Γ |=CL C, and let s be a complete
/ classical state containing a verifier of Γ, C ∨ ¬C. Then s contains a verifier of
Γ and so by assumption, s contains a verifier of C. Then the maximal part of s
containing a verifier of Γ, C ∨¬C also contains that verifier of C, so Γ, C ∨¬C |=I C
/ Γ, C ∨ ¬C |=2 C.

Suppose now that Γ, C ∨¬C |=I C / Γ, C ∨¬C |=2 C, and let s be a complete /
classical state containing a verifier of Γ. Since s is complete, s also contains a verifier
of C ∨¬C, and hence of Γ, C ∨¬C. By assumption, the maximal part of s containing
a verifier of Γ, C∨¬C contains a verifier of C, so s contains a verifier of C, and hence
Γ |=LP C / Γ |=CL C. □

Especially parts 5. and 6. of proposition 10 are striking. While |=I and |=2

are both strictly speaking narrower relations of consequence than |=LP and
|=CL, whenever some conclusion follows from some premises according to the
latter, it follows according to the former from the same premises, enriched by
the instance of the law of excluded middle for the case of the conclusion. And
note that even from the perspective of our various semantic characterizations
of |=I and |=2, there is a sense in which all instances of excluded middle are
trivial: although they do not follow from the empty set of premises, they are
verified—or grounded, in Schnieder’s setting—within every model. For this rea-
son, Schnieder even goes so far as to suggest that under the most appropriate
understanding of the notion of a logical truth within this context, they should
be counted as logical truths (cf. ?, p. S1354). Informally, we might therefore
perhaps describe the difference between |=I and |=LP , and |=2 and |=CL as
follows. In order for Γ |=I C to hold, it needs to be the case that Γ |=LP C
holds, and in addition, the premises Γ need to be in part about the subject
matter of the conclusion C, although they do not need to provide non-trivial
information about that subject matter—and likewise for |=2 and |=CL.

This is not to say, though, that the differences between these pairs of logics
are merely superficial. One important difference is that for both LP and CL we
have the so-called deduction theorem: if Γ, A |= C then Γ |= A→ C. (Officially,
our language does not include a material conditional, but we may take A→ C
to abbreviate ¬A ∨ C.) For the web consequence relations, it is clear that
this fails because never ∅ |= C. In fact, we do not even need to consider the
empty set of premises to show that the deduction theorem fails: it is readily
verified that for all four web consequence relations, we have A,B |= A∧B but
A ̸|= B → (A ∧B), i.e. A ̸|= ¬B ∨ (A ∧B).

How do the consequence relations we have defined relate to each other,
and how do they fare with respect to the counter-intuitive principles of clas-
sical logic mentioned at the beginning—i.e. the principle EFQ that a classical
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contradiction entails everything, and the principle VEQ that a classical tau-
tology such as A ∨ ¬A is entailed by everything? To bring out the distinctive
differences between the consequence relations, we may consider the following
three principles, also including a weakened version of VEQ, on which A∨¬A is
entailed by the disjunction of itself with an arbitrary formula. For explicitness:

EFQ A ∧ ¬A |= B
VEQ B |= A ∨ ¬A
WVEQ B ∨ (A ∨ ¬A) |= A ∨ ¬A

The following table shows which principles hold for which consequence relation,
where ✓ indicates that the principle in question does hold, and ✗ indicates
that it does not.

|=4/FDE |=I |=LP |=P/K3 |=2 |=CL

EFQ ✗ ✗ ✗ ✓ ✓ ✓

VEQ ✗ ✗ ✓ ✗ ✗ ✓

WVEQ ✗ ✓ ✓ ✗ ✓ ✓

So only |=4 and |=I invalidate both EFQ and VEQ, and only |=4 invalidates all
three principles. The table also makes clear that none of the six consequence
relations coincide. Putting our results so far together, we obtain the following
view of their relation:

CL

LP2

P/K3 I

4/FDE

Here the lines represent relationships of strict inclusion, so that the con-
sequence relation at the upper end of the line is strictly wider than the
consequence relation at the lower end of the line.

Given that Schnieder’s stated aim of invalidating EFQ and VEQ is achieved
by both |=4 and his preferred |=I , it is natural to ask which of the two
constitutes a more attractive account of consequence overall. Developing a
well-supported answer to this question is beyond the scope of this paper. How-
ever, in the concluding section 7 below, I shall briefly return to this matter
and highlight some points of contrast between the two accounts that seem
particularly significant to me.
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4.3 R-Space Semantics

There is a way in which both the semantics proposed by Schnieder and the
canonical model semantics can seem objectionably non-semantic, as it were.
In Schnieder’s setting, the central ingredient in the definition of consequence
is a syntactically defined relation of grounding. In the setting of truthmaker
semantics, we switched to a more semantic sounding relation of verification, but
so far we have appealed only to the canonical model, within which verification
is still just a relation between formulas and sets of formulas and ultimately
characterized in purely syntactic fashion.

One may debate to what extent this feature of the definitions should be
considered problematic, but it seems worth asking whether we can also give an
equivalent semantics which simply avoids this objection. And indeed we can, in
a number of ways. In this section, I present a more general form of truthmaker
semantics using a wider class of (non-canonical) models and provide equivalent
characterizations of all our consequence relations. In this form of truthmaker
semantics, we use structures that I call R-spaces, which are like ordinary state-
spaces, but with a designated reality state, which we may think of as the fusion
of all states in the space that obtain.

Definition 17 An R-space is any triple (S, ⊑, r) with (S, ⊑) a state-space and
r ∈ S.

Definition 18 A bilateral proposition P = (P+, P−) on an R-space (S, ⊑, r) is

� closed iff P+ and P− are closed under non-empty fusions
� decided iff some element of P+ ∪ P− is part of r
� consistent iff no element of P+ ∩ P− is part of r
� classical iff decided and consistent

Proposition 11 Closure, Decidedness, Consistency, and Classicality are preserved
under conjunction, disjunction and negation as defined in definition 11.

Proof Straightforward by application of the definitions. □

Definition 19

� An R-model is any quadruple (S, ⊑, r, [·]) with (S, ⊑, r) an R-space and [·]
a function mapping each atom p ∈ At to a closed bilateral proposition on
(S, ⊑).

� An R-model (S, ⊑, r, [·]) is complete (consistent, classical) iff every value of
[·] is decided (consistent, classical).
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Given an R-model, [·] is extended to complex formulas in the same as for
state-models in general (see definition 12). By proposition 11, in a complete
(consistent, classical) model, [A] is decided (consistent, classical) for all A ∈ L.

Definition 20 Let Γ ∪ {C} ⊆L and M = (S, ⊑, r, [·]) an R-model. Then Γ ⇒M C
iff: if r inexactly verifies Γ, then the maximal part of r verifying Γ contains a verifier
of C.

Definition 21 Let Γ ∪ {C} ⊆ L. Then

� Γ |=R4 C iff Γ ⇒M C for every R-model M
� Γ |=RI C iff Γ ⇒M C for every complete R-model M
� Γ |=RP C iff Γ ⇒M C for every consistent R-model M
� Γ |=R2 C iff Γ ⇒M C for every classical R-model M

To prove equivalence to our web-consequence relations, we associate the reality
state in an R-model with a corresponding canonical state.

Definition 22 For any R-model with reality state r, let r∗ = {ϕ ∈ Lit : r contains
a verifier of ϕ}.

It is readily seen that whenever an R-modelM with reality state r is complete
(consistent, classical), r∗ is also complete (consistent, classical).

Lemma 12 For any R-model M , if Γ ⇒r∗ C, also Γ ⇒M C.

Proof In what follows, we use subscripts C and M for the model-relative terms such
as ‘verifies’ and ‘contains’ to make clear if they are to be understood relative to the
canonical model or the R-model M .

For any ϕ ∈ r∗, let ϕ◦ be some partM of r verifyingM ϕ, and for each z ⊆ r∗,
let z◦ be

⊔
{ϕ◦ : ϕ ∈ z}. Note that for any z, z1, z2 ⊆ r∗ we have that z◦ ⊑ r, that

z◦1 ⊔ z◦2 = (z1 ∪ z2)
◦ and that z◦1 ⊑ z◦2 if z1 ⊆ z2. We first prove by induction that

(*) if r containsM a verifierM of A then r∗ containsC a verifierC of A and,
for all z ⊆ r∗, if z verifiesC A, then z◦ verifiesM A.

In the base case, A is a literal. But if r containsM a verifierM of literal ϕ, then by
construction, r∗ containsC {ϕ}, which verifiesC ϕ. If z ⊆ r∗ verifiesC a literal ϕ,
z = {ϕ}. Then z◦ =

⊔
{ϕ◦} = ϕ◦, which is a verifierM of ϕ, as required.

Now suppose (*) holds of A and B (IH). We prove that it then also holds of
(A ∧B), (A ∨B), ¬(A ∧B), ¬(A ∨B), and ¬¬A.

If r containsM a verifierM of A ∧ B, then r containsM a verifierM of A and a
verifierM of B. By IH, r∗ containsC a verifierC of A and a verifierC of B, and hence
contains a verifierC of A∧B. If z ⊆ r∗ verifiesC A∧B, then z = z1 ∪ z2 with z1, z2
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verifyingC A, B, respectively. By IH, z◦1 verifiesM A and z◦2 verifiesM B. Then z◦1⊔z◦2
verifiesM A ∧B and is equal to (z1 ∪ z2)

◦ = z◦.
If r containsM a verifierM of A ∨ B, then r containsM a verifierM of A or of

B. By IH, r∗ containsC a verifierC of A or of B, and hence containsC a verifierC of
A ∨ B. If z ⊆ r∗ verifiesC A ∨ B, either (i) z verifiesC A, or (ii) z verifiesC B, or
(iii) z = z1 ∪ z2 with z1, z2 verifyingC A, B, respectively. If (i), by IH, z◦ verifiesM
A and hence A ∨B. Similarly if (ii). If (iii), the reasoning is as before.

The other cases are similar. This completes the proof of (*).
Now suppose Γ ̸⇒M C, so r inexactly verifiesM Γ, but there are no u ⊑ t ⊑ r

with u verifyingM C and t verifyingM Γ. By (*), r∗ inexactly verifiesC Γ. Suppose
for contradiction that Γ ⇒r∗ C, so there are x ⊆ y ⊆ r∗ with x verifyingC C and
y verifyingC Γ. Then x◦ ⊑ y◦ ⊑ r, and by (*), x◦ verifiesM C and y◦ verifiesM Γ,
contrary to assumption. □

Theorem 13 Let Γ ∪ {C} ⊆ L. Then Γ |=∗ C iff Γ |=R∗ C for all ∗ ∈ {4, I, P, 2}

Proof We do the case of ∗ = 4 and sketch how to adapt the reasoning to the other
cases. We use subscripts for model-relative vocabulary as in the previous proof.

Left-to-right: Suppose Γ ̸|=R4 C, so there is an R-model M = (S, ⊑, r, [·]) such
that Γ ̸⇒M C. By lemma 12, Γ ̸⇒r∗ C. Since r∗ ∈ SC , it follows that Γ ̸|=C4 C,
and hence by proposition 7, that Γ ̸|=4 C. The reasoning generalizes to the other
cases, using the fact that r∗ is a complete (consistent, classical) canonical state if the
R-model M is complete (consistent, classical).

Right-to-left: Suppose Γ ̸|=4 C. By proposition 7, Γ ̸|=C4 C, so in MC , there is
an s ∈ SC such that s inexactly verifiesC Γ, but it is not the case that the maximal
part of s verifyingC Γ containsC a verifierC of C. Since (SC , ⊑C , s, [·]C) is an R-
model, it follows that Γ ̸|=R4 C. The reasoning generalizes to the other cases, using
the fact that the R-model (SC , ⊑C , s, [·]C) is complete (consistent, classical) if s is
complete (consistent, classical). □

5 Many-Valued Semantics

In this section, I present many-valued characterizations of the consequence
relations defined in the previous sections. To see how this works, it helps to
first bring the previous definitions into a slightly different shape, more similar
to standard definitions of consequence in terms of the preservation of some
property from premises to conclusion (sec. 5.1), before specifying the many-
valued system itself (sec. 5.2) and using it to define consequence relations
provably equivalent to the web consequence relations (sec. 5.3).

5.1 Consequence as Preservation

As part of the informal introduction of his proposal, Schnieder suggests that we
may think of it as replacing ‘the idea of truth-preservation, which is central to
all standard accounts of consequence, with the idea of ground-preservation’ (?,
p. S1346). It turns out to be instructive to pursue this suggestion. As Schnieder
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emphasizes, most familiar definitions of consequence follow a common pat-
tern: they generalize over a class of models, or interpretations, of the language
in question, and then ask whether the conclusion is true under a given inter-
pretation, provided that each premise is true under that same interpretation.
Different conceptions of consequence then result from different conceptions of
the range of interpretations, and of what it is for a formula to be true under
an interpretation.

Schnieder’s remark suggests that his definition of consequence instantiates
a similar pattern, but with a ground-theoretic property taking the place of the
property of truth. At first glance, however, it seems that neither Schnieder’s
own definitions nor our various reformulations and variations really fit this
pattern. For present purposes, the point is best illustrated by the following
characterization:

� Γ |=4/I/P/2 C iff for any arbitrary / complete / consistent / classical state
s ∈ SC , if s contains a verifier of Γ, then the maximal verifier of Γ contained
in s contains a verifier of C.

Here, the generalization over a given class of states plays the role of a gen-
eralization over interpretations. Then with respect to any such interpretation,
we ask if the premise set has a certain property: being verified by part of the
interpretation-state—and given the close connection between verification and
grounding, we may reasonably count this as a ground-theoretic property. But
if the premise set has that property, we do not go on to ask whether the con-
clusion also has that property with respect to the interpretation. Instead, we
ask whether the conclusion stands in a certain ground-theoretic relation to the
premises, relative to the interpretation being considered.

It turns out, however, that these definitions can be reformulated in a way
that is closer to the standard pattern. The key is to regard as interpretations
not simply the (complete, consistent, classical) states generalized over above,
but pairs of such states with designated parts, or equivalently, states paired
with arbitrary (complete, consistent, classical) extensions. To make this pre-
cise, let us say that a state s is an s+-maximal verifier of a formula A iff s
verifies A, s is part of s+, and s is the maximal verifier of A that is part of s+,
and define the following three ‘locality-grades’ of verification of a formula by
such a pair of states, capturing to what extent verification of the formula by
the pair (s, s+) is confined to the designated part s:

Definition 23 Let A ∈ Γ and s ⊑ s+ ∈ SC

� (s, s+) verifies A iff s+ contains a verifier of A
� (s, s+) locally verifies A iff s contains a verifier of A
� (s, s+) superlocally verifies A iff s contains an s+-maximal verifier of A

Is there an informal gloss on these two-component interpretations (s, s+)? It
may be helpful here to recall Schnieder’s informal gloss: ‘[a] proposition is a
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consequence of some premises if, given that they are grounded themselves,
they provide a ground of it or bring such a ground along ’ ((?, p. S1346)).
Very roughly, in an interpretation (s, s+), one can think of s+ as the overall
situation relative to which we are evaluating given premises Γ and conclusion
C, and s as that part of the overall situation we consider as putatively ‘brought
along’ by the premise set. Thus, we have a counter-model if Γ is grounded in
s+, if the designated part s comprises the entirety of what Γ brings along in
s+, but s, and hence what Γ brings along in s+, does not include a ground of
the conclusion.

We can now establish the following characterization of our four consequence
relations:

Proposition 14 Γ |=4/I/P/2 C iff

for every state s and arbitrary / complete / consistent / classical extension s+,
if (s, s+) superlocally verifies each A ∈ Γ, then (s, s+) locally verifies C.

Proof We give a proof for the case of |=4 and a state s paired with an arbitrary
extension s+; it carries over to the other cases straightforwardly.

Left-to-right: Assume Γ |=4 P . Then by proposition 7 and lemma 6, for any state
s containing a verifier of Γ, the s-maximal verifier of Γ contains a verifier of C. Now
let s ⊑ s+ and suppose (s, s+) superlocally verifies each A ∈ Γ. It follows that s+

contains a verifier of Γ, and that s contains the s+-maximal verifier of Γ. Call that
state t. By assumption, t contains a verifier of C, and hence so does s. So (s, s+)
locally verifies C, as required.

Right-to-left: Assume that whenever s ⊑ s+, if (s, s+) superlocally verifies each
A ∈ Γ, then (s, s+) locally verifies C. Let s+ be any state containing a verifier of Γ,
and let s be the s+-maximal verifier of Γ. We need to show that s contains a verifier
of C. Since s is the s+-maximal verifier of Γ, s contains an s+-maximal verifier of
each A ∈ Γ, so (s, s+) superlocally verifies each A ∈ Γ. By assumption, (s, s+) locally
verifies C, and hence s contains a verifier of C, as required. □

There are two features of the conditions here identified as necessary and suf-
ficient for our consequence relations to obtain that require comment. First, in
contrast to the previous characterizations of the relations, the property that we
are appealing to with respect to the conclusion—i.e. being locally verified—is
one it has, or lacks, relative only to the interpretation, rather than relative to
the interpretation and the given premise set. This makes it possible to encode
the property by means of a value within a many-valued semantics, as we shall
see in the next section.

Second, while the shape of the conditions is reminiscent of definitions of
consequence as some form of truth-preservation, the condition is not actu-
ally one of preservation of one and the same ground-theoretic property—it
is required only that if all premises are superlocally verified, then the con-
clusion is locally verified. We might therefore regard the relation as one of
partial or imperfect preservation: if the premises are verified with the highest
degree of locality, the conclusion is verified at least with the second-highest
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degree of locality. In this way, the web consequence relations are very similar
to the consequence relations studied in so-called Strict/Tolerant logic, which
is based precisely on the idea that the premises in an inference are to be held
to higher standards—need to be true in a stronger or stricter sense—than the
conclusion.13 Since they require only a form of imperfect preservation of a
property from premises to conclusion, strict/tolerant logics are typically non-
transitive. Unsurprisingly, the same is true of two of our web consequence
relations, namely |=I and |=2. The same example serves to establish the non-
transitivity of both consequence relations. It is easily verified that we have
P |=I P ∨ (Q ∨ ¬Q) and P ∨ (Q ∨ ¬Q) |=I Q ∨ ¬Q, but P ̸|=2 Q ∨ ¬Q. Since
every |=I -entailment is a |=2-entailment, it follows that both |=I and |=2 are
non-transitive. The other two web consequence relations |=4 and |=P are of
course transitive, since they coincide with FDE and K3, respectively, for which
we gave definitions in terms of preservation of inexact verification above.

5.2 Values

In terms of our three locality-grades of verification, relative to any pair of
a state s and an extension s+, we can sort the formulas into four mutually
exclusive and exhaustive categories: not verified by (s, s+), verified but not
locally verified by (s, s+), locally but not superlocally verified by (s, s+), and
superlocally verified by (s, s+). The key idea behind the many-valued system
I wish to propose is to represent each of these four categories by a separate
value. And the key fact which makes this possible is that, as we show below,
which of the categories a conjunction or disjunction belongs to is a function
of which of the categories its conjuncts or disjuncts belong to. The same is
not true for negation: we cannot in general tell from the category of A which
category ¬A belongs to. So we assign to each formula a pair of values, the first
representing the category of the formula itself, and the second representing the
category of its negation. Let us make this precise.

Definition 24

� A value is any element of V = {0, 1, 2, 3} × {0, 1, 2, 3}
� A value in V is

– complete iff at most one of its coordinates is 0,
– consistent iff at least one of its coordinates is 0,
– classical iff consistent and complete.

� A web-valuation is any function v : At→ V

13On the idea of strict/tolerant logics, see e.g. ????. ? proposes a truthmaker semantics for
strict/tolerant logic, which is quite different from the ones considered here, though. It would be
interesting to study the relationship between web consequence and strict/tolerant logic in more
detail, but in this paper, we shall limit ourselves to the observation that standard strict/tolerant
logic, in terms of its consequence relation, coincides with classical logic, and thus differs from all
of the web consequence relations.
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� A web-valuation v is complete (consistent, classical) iff for all p ∈ At, v(p)
is complete (consistent, classical).

For A ∈ L and v a web-valuation, we write v+(A) for the first and v−(A) for
the second coordinate of v(A). Informally, v+(A) = 0(1, 2, 3) represents that
A is not (merely, merely locally, superlocally) verified by the interpretation
encoded in v, and v−(A) = 0(1, 2, 3) represents that ¬A is not (merely, merely
locally, superlocally) verified by the interpretation.

To extend a web-valuation v to complex formulas, we first define binary
conjunctive and disjunctive functions on the set {0, 1, 2, 3} by the following
tables. The conjunctive function is then used to determine the positive value
of a conjunction and the negative value of a disjunction, and dually, the dis-
junctive function is used to determine the positive value of a disjunction and
the negative value of a conjunction.

c 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 2 2

3 0 1 2 3

d 0 1 2 3

0 0 1 2 3

1 1 1 2 2

2 2 2 2 2

3 3 2 2 3

Note that the c-function is simply the min-function, as might be expected for
conjunction. The d-function is close to the max-function, but diverges from it
in the highlighted cases, when one argument is 3 and the other 1 or 2, in which
case it yields the value 2. This is justified by the informal interpretation: if A is
superlocally verified and B is verified but not superlocally verified by (s, s+),
then some verifier of A and hence A ∨B is contained in s, so A ∨B is locally
verified, but B and hence A∨B is verified by a part of s+ not contained in s,
so A ∨B is not superlocally verified.

Definition 25 For v a valuation and A,B ∈ L, we let

� v(¬A) = (v−(A), v+(A))
� v(A ∧B) = (c(v+(A), v+(B)), d(v−(A), v−(B))
� v(A ∨B) = (d(v+(A), v+(B)), c(v−(A), v−(B))

Proposition 15 If a web-valuation v is complete (consistent, classical), then for all
A ∈ L, v(A) is complete (consistent, classical).

Proof By induction. The case of atoms is immediate. So suppose v(A) and v(B) are
complete (IH). Then obviously, so is v(¬A). For A∧B, suppose that v−(A∧B) = 0.
By the table for the d-function, v−(A) = v−(B) = 0. By IH, neither of v+(A) and
v+(B) is 0. By the table for the c-function, v+(A ∧ B) is also not 0, so v(A ∧ B) is
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complete. The case of v(A∨B) is dual. Suppose now that v(A) and v(B) are consistent
(IH). Then obviously, so is v(¬A). For A ∧B, suppose v+(A ∧B) ̸= 0. By the table
for the c-function, neither of v+(A) and v+(B) is 0. By IH, v+(A) = v+(B) = 0. By
the table for the d-function, v−(A ∧ B) = 0, so v(A ∧ B) is consistent. The case of
A ∨B is dual. The case of classical valuations then follows straightforwardly. □

5.3 Consequence

We will now define four consequence relations within the many-valued setting
and prove them equivalent to the four web consequence relations.

Definition 26 Let Γ ∪ {C} ⊆ L. Then

� Γ |=M4 C iff for every web-valuation v, if v+(A) = 3 for all A ∈ Γ, then
v+(C) ≥ 2.

� Γ |=MI C iff for every complete web-valuation v, if v+(A) = 3 for all A ∈ Γ,
then v+(C) ≥ 2.

� Γ |=MP C iff for every consistent web-valuation v, if v+(A) = 3 for all A ∈ Γ,
then v+(C) ≥ 2.

� Γ |=M2 C iff for every classical web-valuation v, if v+(A) = 3 for all A ∈ Γ,
then v+(C) ≥ 2.

To prove equivalence, we would like first to associate any web-valuation v with
a corresponding pair (s, s+) from our canonical state-space in such a way that
whenever v+(A) = 3, A is superlocally verified by (s, s+), whenever v+(A) = 2,
then A is merely locally verified by (s, s+), and so on. Given our definition
of a canonical model, however, this is not always possible. For instance, there
are no atoms p and pairs (s, s+) such that p is locally, but not superlocally
verified by (s, s+). The reason is that atoms have only one verifier, which is
automatically their maximal verifier. Fortunately, it will turn out that we can
safely ignore web-valuations for which this problem arises, i.e. web-valuations
that assign a positive or negative value of 2 to some atom.14

Definition 27

� A web-valuation is called simple if it never assigns an atom a positive or
negative value of 2.

� For v a simple web-valuation,

– s(v) := {ϕ ∈ Lit : v+(ϕ) = 3}
– s+(v) := {ϕ ∈ Lit : v+(ϕ) > 0}

� For v a web-valuation, the simplification vs of v is just like v except that
v+s (p) = 1 whenever v+(p) = 2 and v−s (p) = 1 whenever v−(p) = 2.

14Note that this does not mean that the value of 2 is entirely dispensable. Indeed, we will still
have valuations that assign a positive or negative value of 2 to some complex formulas, for instance
when v+(p) = 3 and v+(q) = 1 and therefore v+(p ∨ q) = 2.
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Note that the definitions of s(v) and s+(v) ensure that for all simple valuations
v, s+(v) is complete (consistent, classical) if v is, and always s(v) ⊑ s+(v).

Lemma 16 For all A ∈ L,

1. if v+(A) = 3, then A is superlocally verified by (s(v), s+(v)),
2. if v+(A) < 2, then A is not locally verified by (s(v), s+(v)),
3. if v+(A) = 0, then A is not verified by (s(v), s+(v))

Proof For the case of A a literal, suppose ϕ ∈ Lit. Note that in the canonical model,
{ϕ} is the sole and therefore maximal verifier of ϕ. If v+(ϕ) = 3, then by definition,
ϕ ∈ s(v), so s(v) contains the s+(v)-maximal verifier of ϕ, and hence ϕ is superlocally
verified by (s(v), s+(v)). If v+(ϕ) < 2, then by definition, ϕ /∈ s(v), so s(v) contains
no verifier of ϕ, and hence ϕ is not locally verified by (s(v), s+(v)). If v+(ϕ) = 0,
then by definition, ϕ /∈ s+(v), so s+(v) contains no verifier of ϕ, and hence ϕ is not
verified by (s(v), s+(v)).

Now suppose for induction that (IH) A and B satisfy the claim. We can then
show that so do (A ∧ B), (A ∨ B), ¬(A ∧ B), and ¬(A ∨ B). We give the proof for
the cases of (A ∧B) and (A ∨B), the other two cases are dual.

If v+(A ∧ B) = 3, then v+(A) = v+(B) = 3, so by (IH), both A and B are
superlocally verified by (s(v), s+(v)). Then s(v) contains the fusion of the s+(v)-
maximal verifier of A and the s+(v)-maximal verifier of B, which is the s+(v)-
maximal verifier of (A ∧ B), hence (A ∧ B) is superlocally verified by (s(v), s+(v)).
For the case of v+(A ∧ B) < 2, the key is to observe that v+(A ∧ B) < 2 only if
either v+(A) < 2 or v+(B) < 2, and that A ∧ B is locally verified by (s(v), s+(v))
only if both A and B are. The case of v+(A ∧B) = 0 is analogous.

Now suppose v+(A∨B) = 3. There are two cases. In the first, v+(A) = v+(B) =
3. Then the reasoning is as in the case of conjunction above, since the fusion of the
s+(v)-maximal verifiers of A and B is also the s+(v)-maximal verifier of (A ∨ B).
In the second case, one of v+(A) and v+(B) is 3, and the other 0. Without loss of
generality, assume v+(A) = 3 and v+(B) = 0. Then by IH, A is superlocally verified
by (s(v), s+(v)) and B is not verified by (s(v), s+(v)), i.e. s+(v) does not contain a
verifier of B. Then the s+(v)-maximal verifier of A is also the s+(v)-maximal verifier
of (A∨B), and hence (A∨B) is superlocally verified (s(v), s+(v)), as required. □

Lemma 17 For v any valuation and A ∈ L:

1. If v+(A) = 3 then v+s (A) = 3 and if v−(A) = 3 then v−s (A) = 3
2. If v+(A) < 2 then v+s (A) < 2 and if v−(A) < 2 then v−s (A) < 2
3. If v+(A) = 0 then v+s (A) = 0 and if v−(A) = 0 then v−s (A) = 0

Proof By a straightforward induction using the tables for c and d and the definition
of simplification. □

Next, we associate any pair s ⊑ s+ from our canonical state-space with a
corresponding simple valuation.
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Definition 28 For any canonical states s ⊑ s+, let v(s,s+) be such that v+
(s,s+)

(p)

is 3 if p ∈ s, 1 if p ∈ s+ but p /∈ s, and 0 otherwise, and v−
(s,s+)

(p) is 3 if ¬p ∈ s, 1 if

¬p ∈ s+ but ¬p /∈ s, and 0 otherwise.

Note that v(s,s+) is complete (consistent, classical) if s+ is.

Lemma 18 For s, s+ canonical states with s ⊑ s+ and A ∈ L:

1. If (s, s+) superlocally verifies A, then v+(s,s+)(A) = 3

2. If (s, s+) does not locally verify A, then v+(s,s+)(A) < 2

3. If (s, s+) does not verify A, then v+(s,s+)(A) = 0

Proof For the case of A a literal, suppose first that (s, s+) superlocally verifies ϕ, so
ϕ ∈ s. Then by definition, if ϕ is an atom, v+

(s,s+)
(ϕ) = 3, and if ϕ is the negation

of an atom p, v−
(s,s+)

(p) = 3 and so again v+
(s,s+)

(ϕ) = 3. If (s, s+) does not locally

verify ϕ, then ϕ /∈ s. Similarly as before, by definition, whether ϕ is an atom or the
negation of an atom, v+

(s,s+)
(ϕ) is either 0 or 1, and hence < 2. If (s, s+) does not

locally verify ϕ, then ϕ /∈ s+, and by definition, v+
(s,s+)

(ϕ) = 0.

Now suppose for induction that (IH) A and B satisfy the claim. We can then
show that so do (A∧B), (A∨B), ¬(A∧B), and ¬(A∨B). For illustration, we give
the proof for the case of (A∨B), the other cases follow a similar pattern. So suppose
first that (s, s+) superlocally verifies A ∨ B, so the s+-maximal verifier of A ∨ B is
contained in s. There are two cases. In the first, the s+-maximal verifier of A ∨ B
is the fusion of s+-maximal verifiers of A and B, in which case A and B are both
superlocally verified by (s, s+). Then by IH, v+

(s,s+)
(A) = 3 and v+

(s,s+)
(B) = 3, so

v+
(s,s+)

(A ∨ B) = 3. In the second case, the s+-maximal verifier of A ∨ B is the s+-

maximal verifiers of either A or B, with s not containing any verifier of the other one
of A and B. In that case, one of A and B is superlocally verified by (s, s+) and the
other not even locally verified. Then by IH, one has positive value 3 and the other 0,
so v+

(s,s+)
(A ∨B) = 3, as required. Suppose next that (s, s+) does not locally verify

A ∨B. Then s contains no verifier of A and no verifier of B, and hence (s, s+) does
not locally verify either. So by IH, v+

(s,s+)
(A) < 2 and v+

(s,s+)
(B) < 2 and hence

v+
(s,s+)

(A ∨ B) < 2. Suppose finally that (s, s+) does not verify A ∨ B. Then s+

contains no verifier of A and no verifier of B, and hence (s, s+) does not verify either.
So by IH, v+

(s,s+)
(A) = 0 and v+

(s,s+)
(B) = 0 and hence v+

(s,s+)
(A ∨B) = 0. □

Theorem 19 Let Γ ∪ {C} ⊆ L. Then Γ |=∗ C iff Γ |=M∗ C for all ∗ ∈ {4, I, P, 2}

Proof We give the proof for |=4. Left-to-right: Suppose there is a web-valuation v
with v+(A) = 3 for all A ∈ Γ and v+(C) < 2. By lemma 17, v+s (A) = 3 for all A ∈ Γ
and v+s (C) < 2. By lemma 16, every A ∈ Γ is superlocally verified by (s(vs), s

+(vs)),
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but C is not locally verified by (s(vs), s
+(vs)). By proposition 14, Γ ̸|=4 C. The

reasoning straightforwardly carries over to the other cases, using our observations
that simplification preserves completeness and consistency of a valuation, and that
for simple v, s+(v) is complete (consistent, classical) if v is.

Right-to-left: suppose Γ ̸|=4 C. By proposition 14, in the canonical model there
are states s ⊑ s+ with (s, s+) superlocally verifying each A ∈ Γ but not locally
verifying C. By lemma 18, v+

(s,s+)
(A) = 3 for all A ∈ Γ but v+

(s,s+)
(C) < 2, as

required. The reasoning again carries over to the other cases, using the observation
that v(s,s+) is complete (consistent, classical) if s+ is. □

6 Tableaux

In this section, I describe tableaux-based proof procedures which are sound
and complete for |=4, |=I , |=P , and |=2, respectively. The tableaux generated
are the same in each case, with the different derivability relations resulting
from different definitions of what it is for a tableau to be closed. I will make use
of a kind of tableaux similar to those employed in (?, esp. ch. 8) for logics such
as FDE, placing formulas paired with certain flags on the nodes. Informally,
the flags represent conditions on the positive value of the relevant formula. We
shall therefore use as flags certain subsets of the set V . A node A, {0, 1} is then
to be read as representing the condition that formula A has a positive value of
either 0 or 1. As usual, the construction of a tableau testing an inference from
Γ to C represents a systematic and exhaustive search for a counter-model to
the entailment of C by Γ, i.e. a valuation in which each premise has positive
value 3, but in which the conclusion has a positive value less than 2.

We will need to use three flags—{3}, {0, 1}, and {0}—which we abbreviate
as 3, <2, and 0, respectively. For each flag, we give rules for extending tableaux
with a leaf node with that flag. We begin with the rules for 3-flagged formulas.

(3:¬¬) ¬¬A, 3

A, 3

(3:∧) A ∧B, 3

A, 3
B, 3

(3:¬∧) ¬(A ∧B), 3

¬A, 3
¬B, 3

¬A, 3
¬B, 0

¬A, 0
¬B, 3

(3:∨) A ∨B, 3

A, 3
B, 3

A, 3
B, 0

A, 0
B, 3

(3:¬∨) ¬(A ∨B), 3

¬A, 3
¬B, 3
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With the exception of the rules for disjunctions and negated conjunctions,
the rules are exactly like the rules for +-signed formulas in Priest’s tableau
calculus for FDE. The exceptions correspond to the ‘non-standard’ entries in
the disjunction-table discussed above: a disjunction has value 3 whenever one
disjunct has value 3, provided the other one does not have value 1 or 2, in
which case the disjunction is verified but not superlocally verified.

The rules for < 2-flagged formulas are even more straightforward; in fact,
they are exactly like Priest’s rules for −-signed formulas.

(<2:¬¬) ¬¬A, <2

A, <2

(<2:∧) A ∧B, <2

A, <2 B, <2

(<2:¬∧) ¬(A ∧B), <2

¬A, <2
¬B, <2

(<2:∨) A ∨B, <2

A, <2
B, <2

(<2:¬∨) ¬(A ∨B), <2

¬A, <2 ¬B, <2

The rules for 0-flagged formulas are exactly analogous to those for <2-flagged
formulas, giving rise to new 0-flagged nodes instead of <2-flagged ones.

We now define various conditions under which a branch will be consid-
ered closed, depending on which consequence relation we are trying to find a
counter-model for.

Definition 29 Let b be a branch in some given tableau. Then b is

� gappy iff for some formula A, both A, 0 and ¬A, 0 are on b
� glutty iff for some formula A, both A, 3 and ¬A, 3 are on b
� 4-closed iff for some formula A, both A, 3 and A, <2 or A, 0 are on b
� i-closed iff 4-closed or gappy
� p-closed iff 4-closed or glutty
� 2-closed iff 4-closed or gappy or glutty

We are now in a position to define provability from some premises. For sim-
plicity, we shall restrict attention in this paper to finite sets of premises. There
is a natural way of extending our treatment to the case of infinite premise sets,
and the soundness and completeness results then carry over to the general case
as well.15

15This may be done, for example, by a straightforward adaptation of the methods used in (?,
sections 12.7-10).
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Definition 30 Let Γ ∪ {C} be a finite subset of L.

� A tableau T tests (Γ, C) iff T begins with A, 3 for all A ∈ Γ, followed by
C, < 2.

� Γ ⊢4 C (Γ ⊢I C, Γ ⊢P C, Γ ⊢2 C) iff there is a tableau testing (Γ, C) every
branch of which is 4-closed (i-closed, p-closed, 2-closed)

We look at some simple examples of tableaux. We shall mark the fact that
a certain branch satisfies one of the conditions for being closed by writing
⊗ below the last node, adding as a superscript an indication of the most
demanding closure condition(s) the branch satisfies. Here is a very simple
example, testing the inference from A ∧B to B ∨ C.

A ∧B, 3
B ∨ C, <2
B, <2
C, <2
A, 3
B, 3
⊗4

The one and only branch is 4-closed since it contains B both 3- and< 2-flagged.
So the tableau shows that the inference tested is valid in all four deductive
systems under consideration.

Here is a slightly more complicated complete tableau testing the inference
from A ∨ (B ∨ ¬B) to B ∨ ¬B which illustrates the use of the somewhat
unusual-looking rule for 3-flagged disjunctions.

A ∨ (B ∨ ¬B), 3
B ∨ ¬B, <2
B, <2
¬B, <2

A, 3
B ∨ ¬B, 3

B, 3
¬B, 3
⊗4

B, 3
¬B, 0
⊗4

B, 0
¬B, 3
⊗4

A, 3
B ∨ ¬B, 0
B, 0
¬B, 0
⊗i

A, 0
B ∨ ¬B, 3

B, 3
¬B, 3
⊗4

B, 3
¬B, 0
⊗4

B, 0
¬B, 3
⊗4

The first three branches from the left are 4-closed because on each of them,
either B or ¬B occurs both 3-flagged and < 2-flagged. The last three branches
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are also 4-closed for the same reason. The center branch is not 4-closed, but
gappy—both B and ¬B occur 0-flagged—and hence i-closed and 2-closed. So
the tableau, since it is complete, shows at once that the inference being tested
is valid in ⊢I and ⊢2 but not in ⊢4 and ⊢P .

6.1 Soundness

Definition 31 A web-valuation v validates a node A, V ′ iff v+(A) ∈ V ′.

Definition 32 A tableau rule is sound iff for every node A, V ′ to which the rule
applies, if a valuation v validates A, V ′, the rule produces some branch such that v
validates every new node on the branch.

Lemma 20 All of the web-tableau rules are sound.

Proof We restrict ourselves to a few illustrative cases.
(3:∨): Suppose the rule is applied to a node A ∨ B, 3. It then produces three

new branches. The first has the additional nodes A, 3 and B, 3, the second has the
additional nodes A, 3 and B, 0, and the third has the additional nodes A, 0 and B, 3.
Let v be a valuation validating A∨B, 3, so v+(A∨B) = 3. Then by the disjunction
table, either v+(A) = v+(B) = 3, or v+(A) = 3 and v+(B) = 0, or v+(A) = 0 and
v+(B) = 3. In the first case, v validates every new node on the first new branch, in
the second case, v validates every new node on the second new branch, and in the
third case, v validates every new node on the third new branch.

(< 2:∧): Suppose the rule is applied to a node A ∧B,< 2. It then produces two
new branches. The first has the additional node A,< 2, and the second has the new
node B,< 2. Let v be a valuation validating A ∨ B,< 2. Then by the conjunction
table, either v+(A) < 2 or v+(B) < 2. In the first case, v validates the new node
on the first branch, and in the second case, v validates the new node on the second
branch. □

Definition 33 A web-valuation v is faithful to a branch b iff v validates every node
on b.

Lemma 21 Let v be web-valuation which is faithful to branch b of some tableau.
Then

1. b is not 4-closed
2. If v is complete, b is not gappy
3. If v is consistent, b is not glutty

Proof Let v be a web-valuation faithful to branch b.
For 1.: Suppose b is 4-closed. Then for some formula A, both A, 3 and A,< 2 are

on b. Since v is faithful to b, v validates both A, 3 and A,< 2, so v+(A) = 3 and
v+(A) < 2. Contradiction. So b is not 4-closed.
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For 2.: Suppose b is gappy. Then for some formula A, both A, 0 and ¬A, 0 are
on b. Since v is faithful to b, v validates both A, 0 and ¬A, 0, so v+(A) = 0 and
v−(A) = 0. By proposition 15, it follows that v is not complete.

For 3.: Suppose b is glutty. Then for some formula A, both A, 3 and ¬A, 3 are
on b. Since v is faithful to b, v validates both A, 0 and ¬A, 0, so v+(A) = 3 and
v−(A) = 3. By proposition 15, it follows that v is not consistent. □

Theorem 22 Let Γ ∪ {C} be a finite subset of L. Then Γ ⊢∗ C implies Γ |=∗ C for
all ∗ ∈ {4, I, P, 2}

Proof Let Γ ∪ {C} be a finite subset of L. For the case of ∗ = 4, suppose Γ ̸|=4 C.
Then there is a valuation v with v+(A) = 3 for all A ∈ Γ and v+(C) < 2. Suppose
for contradiction that Γ ⊢4 C, so there is a tableau T testing (Γ, C) every branch
of which is 4-closed. T begins with A, 3 for all A ∈ Γ, followed by C,< 2, so v is
faithful to this initial segment T0 of T . Since T is obtained by extending T0 through
application of the rules, and since all the rules are sound, v is faithful to some branch
b of T . By lemma 21, this contradicts the assumption that every branch of T is 4-
closed. The other cases are parallel. □

6.2 Completeness

We now prove completeness of the tableau procedures with respect to the
corresponding many-valued consequence relations. First, we show that each
tableau rule is complete in the following sense:

Definition 34 A tableau rule is complete iff whenever a valuation v validates every
new node on some branch produced in applying the rule to a node A, V ′, then v also
validates A, V ′.

Lemma 23 All of the web-tableau rules are complete.

Proof We again restrict ourselves to a few illustrative cases.
(3:∨) The rule applies to any node A ∨ B, 3 and then produces three branches

b1, b2, b3 whose new nodes are as follows. b1: A, 3 and B, 3; b2: A, 3 and B, 0; b3: A, 0
and B, 3. It is immediate from the positive table for ∨ that if v+(A) = v+(B) = 3,
or v+(A) = 3 and v+(B) = 0, or v+(A) = 0 and v+(B) = 3, then v+(A ∨ B) = 3,
as required.

(< 2:∧) The rule applies to any node A∧B,< 2 and then produces two branches
b1, b2 whose new nodes are as follows. b1: A,< 2; b2: B,< 2. It is immediate from
the positive table for ∧ that if v+(A) < 2 or v+(B) < 2 then v+(A ∧ B) < 2, as
required. □

We then read off suitable valuations from complete open branches.
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Definition 35 Let b be any complete 4-open branch. For ϕ ∈ Lit, let Cb(ϕ) be V if
no node of the form ϕ, V ′ occurs on b, and

⋂
{V ′ ⊂ V : ϕ, V ′ is on b} otherwise.

Proposition 24 If b is a complete 4-open branch and ϕ ∈ Lit, Cb(ϕ) is non-empty.

Proof Obviously, Cb(ϕ) is non-empty if no node of the form ϕ, V ′ occurs on b, so
suppose some nodes of that form occur on b. Since b is 4-open, if ϕ, 3 occurs on b,
then neither ϕ,< 2 nor ϕ, 0 occurs on b, so Cp(ϕ) = {3}. And if ϕ, 3 does not occur
on b, then clearly 0 ∈ Cb(ϕ). So either way, Cb(ϕ) is non-empty. □

Definition 36 Let b be any complete 4-open branch.

� The max-valuation induced by b is the valuation vb,max such that

– v+b,max(p) = max(Cb(p))

– v−b,max(p) = max(Cb(¬p))
� The min-valuation induced by b is the valuation vb,min with

– v+b,min(p) = min(Cb(p))

– v−b,min(p) = min(Cb(¬p))

Definition 37 For valuations v0, v1, let v0 ≤ v1 iff for all p ∈ At, v+0 (p) ≤ v+1 (p)

and v−0 (p) ≤ v−1 (p)

Lemma 25 Let b be any complete 4-open branch. Then every valuation v with
vb,min ≤ v ≤ vb,max is faithful to b.

Proof We prove by induction on the complexity of A that v validates every node
A, V ′ on b. For the case of literals, this is immediate from the definition of vb,max

and vb,min and the readily verifiable fact that Cb(ϕ) always includes every number
between its maximum and its minimum element. So suppose for induction that (IH)
the claim holds for A, B, ¬A, and ¬B. It then suffices to show that it also holds
for (A ∧ B), (A ∨ B), ¬(A ∧ B), ¬(A ∨ B), and ¬¬A. Let Φ be any of these, and
suppose that Φ, V ′ is on b. Since b is complete, the rule for Φ, V ′ has been applied.
By inspection of the rules, every new node on b produced in applying that rule is
occupied by A, B, ¬A, or ¬B, so by IH, v validates every such node. By lemma 23,
v also validates Φ, V ′. □

Lemma 26 Let b be any complete 4-open branch of a web-tableau. Then

1. if b is i-open, then vb,max is complete,
2. if b is p-open, then vb,min is consistent, and
3. if b is 2-open, then some valuation v with vb,min ≤ v ≤ vb,max is classical.
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Proof (1): Suppose v+b,max(p) = 0. Then by definition, Cb(p) =
⋂
{V ′ ⊂ V : (ϕ, V ′)

is on b} = {0}. Since the only flags in a web-tableau are 3, < 2, and 0, it follows
that p, 0 is on b. Since b is i-open, ¬p, 0 is not on b. So 0 /∈ Cb(¬p), and hence
v−(p) = max(Cb(¬p)) ̸= 0, as required.

(2): Suppose v+b,min(p) ̸= 0. Then by definition, 0 /∈ Cb(p) =
⋂
{V ′ ⊂ V : (ϕ, V ′)

is on b}. Since 0 belongs to every flag except 3, it follows that p, 3 is on b. Since b is
p-open, ¬p, 3 is not on b, so v−b,min(p) = min(Cb(¬p)) = 0.

(3): By part (1), vb,max is complete, and by part (2), vb,min is consistent. We
let v(p) = vb,max(p) if that is classical. Otherwise, we let v(p) = vb,min(p) if that
is classical. Finally, if vb,max(p) and vb,min(p) are both non-classical, vb,max(p) is

inconsistent and vb,min(p) is incomplete, so we let v(p) = (v+b,max(p), v
+
b,min(p)),

which is then classical. Then v is classical and vb,min ≤ v ≤ vb,max, as required.
□

Theorem 27 Let Γ ∪ {C} be a finite subset of L. Then Γ |=∗ C implies Γ ⊢∗ C for
all ∗ ∈ {4, I, P, 2}

Proof Suppose that Γ ̸⊢4 C. Then there is a 4-open and complete web-tableau testing
(Γ, C). Let b be a complete 4-open branch of that tableau. Note that b contains the
node C,< 2 as well as A, 3 for each A ∈ Γ. Let v be any valuation with vb,min ≤
v ≤ vb,max. By lemma 25, v is faithful to b, so v+(A) = 3 for all A ∈ Γ and

v+(C) < 2. So Γ ̸|=4 C. The other cases are similar, using lemma 26 to obtain
suitable—i.e. complete, consistent, or classical—valuations v with vb,min ≤ v ≤
vb,max witnessing that Γ ̸|=I/C/P C. □

7 Conclusion

The aim of the present paper was to study and explore the notion of web
consequence introduced in ?. Schnieder’s goal was to develop an explication
of consequence which fits our pre-theoretical understanding of that notion
better than the classical, modal explication, specifically by invalidating the
principles that everything follows from a logical falsehood, and that a logical
truth following from everything. His basic idea was to invoke the notion of
ground for that purpose, taking a conclusion to be a consequence of some
premises, roughly speaking, just when the premises, if true, provide a ground
for the conclusion.

We saw that for the purposes of studying the logic of this consequence
relation, a helpful simplification of this definition is obtained by working with
a notion of ground that corresponds directly to the notion of a truthmaker
within truthmaker semantics. So reframed, the proposal is to take P to be
a logical consequence of Γ just in case in every scenario containing a truth-
maker of Γ, some truthmaker of Γ—or equivalently, the maximal truthmaker
of Γ—contains as a part a truthmaker of P . Depending on whether scenarios
are assumed to be complete, consistent, both, or neither, we then obtain dif-
ferent variations of web consequence. The distinctive feature common to all
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of them is given by the general form of the definition, which we contrasted
with a similar, but somewhat simpler form, on which P is taken to be a logi-
cal consequence of Γ iff every scenario containing a truthmaker of Γ contains
a truthmaker of P . The difference in the structure of the definition was seen
to lead to extensional differences in the consequence relation just in case sce-
narios are assumed to be complete. Generalizing over arbitrary, consistent,
complete, or classical scenarios, the simpler definitions characterize the logics
of FDE, K3, LP, and classical logic, respectively, whereas the web consequence
definitions yield FDE, K3, Schnieder’s preferred |=I , and |=2. Of these final
two ‘new’ consequence relations, |=I seems the most interesting one, since it—
like FDE—invalidates both of the abovementioned principles, but at the same
time recognizes strictly more entailments than FDE.

To see whether |=I does an overall better job at matching a pre-theoretical
understanding of consequence, we will need to look at principles on which
the two logics differ, and which are simple and intuitively accessible enough
that we may be said to have some pre-theoretical intuitions regarding their
plausibility.16 Here, I will merely highlight three central points over which
the logics come apart, which may have some intuitive as well as theoretical
significance. The first is a principle that, as we already mentioned, holds for
|=I but not for FDE: that A ∨ (B ∨ ¬B) entails B ∨ ¬B. The other two are
meta-rules that hold for FDE but not for |=I . The first example is Cut : from
the assumptions that Γ entails B, and ∆, B entails C, we may infer that Γ,∆
entails C. The second example is a standard rule of disjunction elimination:
from the assumption that Γ, P ∨ Q entails R, we may infer that each of Γ, P
and Γ, Q entails R. For |=I , in contrast, we only have a version of this rule
that is modified in a way analogous to the tableaux rule for disjunction: from
the assumption that Γ, P ∨Q entails R, we may infer that each of Γ, P,Q and
Γ, P,¬Q and Γ,¬P,Q entails R.17

My own inclination is to take all three points to speak in favour of FDE,
but this is not the place to argue the point.

16Needless to say, fit with pre-theoretical intuition is by no means the only criterion by which
to evaluate a proposed account of consequence.

17I am not aware of a natural weakening of Cut that holds for |=I .
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